A New Fast Deterministic Economic Dispatch Method and Statistical Performance Evaluation for the Cascaded Short-Term Hydrothermal Scheduling Problem

نویسندگان

چکیده

The Cascaded Short-Term Hydrothermal Scheduling (CSTHTS) problem is a highly non-linear, multi-modal, non-convex, and NP-hard optimization that has been solved by conventional metaheuristic algorithms in the past. As CSTHTS falls under category of applied operational research, therefore, work still on-going to find new variants existing would better approximate optimal global solution shorter computational time. This article proposes novel deterministic thermal economic dispatch method embedded with improved Accelerated Particle Swarm Optimization (APSO) algorithm infinitesimally reduce Big O time complexity for standard benchmark test case problem. Then, it discusses presents importance performing statistical tests establish supremacy one over other solving results obtained are than many state-of-the-art solve considered literature, superiority APSO established statistically using parametric independent samples t-test non-parametric Mann–Whitney U-test such as particle swarm chosen

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A SIMPLIFIED LAGRANGIAN MULTIPLIER APPROACH FOR FIXED HEAD SHORT-TERM HYDROTHERMAL SCHEDULING

This paper presents a simplifiedlagrangian multiplier based algorithm to solve the fixed head hydrothermalscheduling problem. In fixed head hydrothermal scheduling problem, waterdischarge rate is modeled as quadratic function of hydropower generation andfuel cost is modeled as quadratic function of thermal power generation. Thepower output of each hydro unit varies with the rate of water discha...

متن کامل

Emission Constrained Economic Dispatch for Hydrothermal Coordination

This paper presents an efficient emission constrained economic dispatch algorithm that deals with nonlinear cost function and constraints. It is then incorporated into the dynamic programming based hydrothermal coordination program. The program has been tested on a practical utility system having 32 thermal and 12 hydro generating units. Test results show that a slight increase in production co...

متن کامل

A Novel Solution Based on Differential Evolution for Short-Term Combined Economic Emission Hydrothermal Scheduling

This paper presents a novel approach based on differential evolution for short-term combined economic emission hydrothermal scheduling, which is formulated as a bi-objective problem: 1) minimizing fuel cost and 2) minimizing emission cost. A penalty factor approach is employed to convert the bi-objective problem into a single objective one. In the proposed approach, heuristic rules are proposed...

متن کامل

An adaptive chaotic differential evolution for the short-term hydrothermal generation scheduling problem

0196-8904/$ see front matter 2010 Elsevier Ltd. A doi:10.1016/j.enconman.2010.02.006 * Corresponding author. Tel.: +86 02787543127. E-mail address: [email protected] (J. Zhou). The short-term hydrothermal generation scheduling (SHGS) is a complicated nonlinear optimization problem with a set of operational and hydraulic constraints. A new approach is presented in this paper for solving the sh...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainability

سال: 2023

ISSN: ['2071-1050']

DOI: https://doi.org/10.3390/su15021644